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Abstract 

The multisolution method of phase determination 
combing entropy maximization and likelihood evalu- 
ation, previously developed for and applied to single- 
crystal X-ray studies [Bricogne & Gilmore (1990). 
Acta Cryst. A46, 284-297; Gilmore, Bricogne & 
Bannister (1990). Acta Cryst. A46, 297-308], is here 
extended to permit structure determination from X- 
ray powder diffraction data using the formulae 
derived in the previous paper [Bricogne (1991). Acta 
Cryst. A47, 803-829]. Traditionally, structures are 
difficult to solve ab initio from powder diffraction 
data because of peak overlaps, which arise acciden- 
tally or are imposed by point-group symmetry. Over- 
laps reduce both the effective sampling of reciprocal 
space and the resolution of the data; this makes the 
application of traditional direct methods difficult. In 
the method of combined entropy maximization and 
likelihood evaluation described here, the intensity 
data are normalized using both the overlapped and 
non-overlapped reflections by means of a suitably 
modified version of the MITHRIL computer program 
[Gilmore (1984). J. Appl. Cryst. 17, 42-46; Gilmore 
& Brown (1988). J. Appl. Cryst. 22, 571-572]. The 
data are then passed to the maximum-entropy pro- 
gram MICE [Gilmore, Bricogne & Bannister (1990). 
Acta Cryst. A46, 297-308]. Following origin and 
enantiomorph definition (if relevant), this builds a 
phasing tree in which nodes of the tree represent 
phase permutations of basis-set reflections which are 
used as constraints in entropy maximization. The 
nodes of this tree are ranked according to a likelihood 
criterion evaluated by a new expression capable of 
using the combined intensities of overlapped reflec- 
tions. Successive nodes are built via continuing phase 
permutation, keeping only those solutions for which 
the likelihoods are large. Centroid maps are used to 
determine atomic positions. The method is applied 
to two data sets from known structures: KAIP207 
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[McMurdie, Morris, Evans, Paretzkin, Wong-Ng, 
Ettlinger & Hubbard (1986). Powder Diffr. 1(2), 64- 
77] collected using a conventional X-ray source; and 
the Sigma-2 clathrasil [McCusker (1988). J. Appl. 
Cryst. 21, 305-310] which is a synchrotron-derived 
data set. In both cases the structures are solved 
routinely and show even some of the light-atom posi- 
tions in the final maps. The Sigma-2 map even shows 
the positions of some C and N atoms in the disordered 
1-aminoadamantane molecule present in the cavity. 
The phasing tree for KAIP207 reveals the structure 
after 29 nodes have been computed whilst Sigma-2 
shows a complete structure after 17 nodes. Further- 
more, the inclusion of overlapped reflections in the 
likelihood calculations turns out to be essential - 
nodes which cannot be distinguished when overlaps 
are not present are readily and correctly ranked when 
the latter are included. The centroid maps computed 
with the inclusion of overlapped reflections show a 
significant improvement in signal-to-noise ratio over 
those in which overlapped reflections are omitted. 
We conclude that because of its stability at any resol- 
ution range, this method has the potential to be the 
most powerful technique available for solving struc- 
tures from their powder diffraction data. 

O. Introduction 

Conventional direct methods have had only a limited 
impact on the ab initio solution of structures from 
their X-ray or neutron powder diffraction data. The 
following quotation appears in a review article by 
Shirley (1984): 'the state of the art in ab-initio powder 
structure [determination] is now at about the stage 
that single-crystal structure analysis had reached by 
ca 1950'. 

The reasons for this are not difficult to understand. 
In powder diffraction, a three-dimensional data set 
is projected into one dimension where it is spherically 
averaged; as a result, reflections which would other- 
wise be separately measured overlap and the degree 
of overlap increases with (sin O)/;t, thus effectively 
reducing the resolution of the data to 1.3/~, or greater. 
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The overlap can arise accidentally from the diffraction 
geometry or as a consequence of point-group sym- 
metry. This state of affairs creates a serious obstacle 
to the routine application of conventional direct 
methods, as these need data at atomic resolution. An 
empirical rule to this effect has been stated by 
G. Sheldrick: " I f  less than 50% of the observed data 
in the resolution range 1-1-1.2/~ are 'observed' the 
structure will be difficult to solve by conventional 
direct methods".  

There are exceptions to this rule, the most common 
being very small structures and those containing 
heavy atoms, but it does follow that the application 
of direct methods to structure determination from 
powder diffraction patterns will be a difficult process. 
There have been, however, some notable successes: 
McCusker (1988) solved the Sigma-2 clathrasil with 
11 non-hydrogen non-disordered atoms in the asym- 
metric unit using a synchrotron-radiation data set and 
the direct-methods modules in the X T A L  system 
(Hall & Stewart, 1989); Cheetham, David, Eddy, 
Jakeman, Johnson & Toradi (1986) solved FeAsO4 
using high-resolution powder diffraction data from 
the Rutherford spallation source and the M I T H R I L  
computer program (Gilmore, 1984); and Lehmann, 
Christensen, Fjellv~g, Feidenhans'l  & Nielsen (1987) 
studied AI2Y409 and I204 using X-ray and neutron 
data and the M U L T A N 7 7  direct-methods program 
(Main, Lessinger, Woolfson, Germain & Declercq, 
1977). In addition, David (1990) has applied 
maximum-entropy methods to Patterson deconvol- 
ution for TiO2. There are further references to other 
ab initio structure solutions in McCusker (1988). 

Sheldrick's rule does not apply to structures solved 
by maximum entropy (ME) methods, as has been 
found by Collins & Mahar  (1983) in an application 
to /3-1yxose, Bricogne (1984) in a study of phase 
extension on the small protein crambin and Gilmore 
& Bricogne (1991) in applications to two small 
molecules. Indeed, the method works more smoothly 
in situations of low resolution. This paper thus 
describes the practical application of the theory of 
combined entropy maximization and likelihood dis- 
cussed in the previous paper (Bricogne, 1991; 
hereafter referred to as I) to two powder diffraction 
data sets, one collected on a laboratory source and 
the other collected at a synchrotron. Preliminary 
reports have already been published (Henderson & 
Gilmore, 1989; Gilmore & Bricogne, 1991) although 
there are major differences in this presentation. 

§ 1 of this paper outlines the ME-likelihood 
methods employed to solve structures ab initio from 
their powder data. They are similar to those described 
by Bricogne & Gilmore (1990) and Gilmore, Bricogne 
& Bannister (1990), in which a phasing tree is gener- 
ated after origin and optional enantiomorph 
definition by the process of phase permutation; each 
node on the tree represents a set of phase choices for 

a set of basis reflections which are subjected to con- 
strained entropy maximization. Each node thus has 
associated with it a unique map qME(x) which can 
extrapolate both U magnitudes and their phases for 
reflections that were not included in the basis set. 
Likelihood is used to measure the agreement between 
observed ([ Uh ob.~) and calculated ( U~ E ) amplitudes, 
but, unlike the single-crystal case, the overlapped 
reflections are included, and, in situations where 
muchof  the data are overlapped, this greatly increases 
the power of discrimination of the likelihood in 
choosing the correct node(s). The overlap informa- 
tion is also incorporated into the generation of cen- 
troid maps, which are used to interpret the structure; 
again, in cases of severe overlap, there is a significant 
improvement in the quality of the final maps when 
overlapped reflections are included. The program 
used to normalize the data and select the origin- 
defining reflections is M I T H R I L  (Gilmore, 1984; Gil- 
more & Brown, 1988), whilst the maximum entropy 
and likelihood program is M I C E  (Gilmore, Bricogne 
& Bannister, 1990). The necessary changes to these 
programs in order to accommodate powder diffrac- 
tion data are also discussed in § 1. 

§ 2 describes the two structures, their crystallo- 
graphic intensity data and the method of processing 
these data to get unitary structure factors [uhl °b~ and 
their associated variances. § 3 describes the structure 
solution of KAIP207 where the overlapped reflec- 
tions, which comprise ca 50% of the data, play a 
major role in the likelihood calculations, whilst § 4 
discusses the structure solution of the Sigma-2 clath- 
rasil (McCusker, 1988). In this case there are only 13 
pairs of overlapped reflections in a data set compris- 
ing 245 reflections, but they are nonetheless highly 
significant. In both Sigma-2 and KAIP207 the data 
resolution is ca 1.3 A, so that Sheldrick's rule is vio- 
lated. However, the ME method works routinely and 
the final maps even show both light or disordered 
atoms in a way that is unusual in conventional direct 
methods when heavy atoms are present. 

Finally, § 5 summarizes the paper and suggests 
future developments will serve to strengthen the 
method still further. 

1. The method and the computer programs 

1.1. The phasing method 

The technique is an extension of the procedures 
described by Bricogne & Gilmore (1990) and 
Gilmore, Bricogne & Bannister (1990). 

(i) The data are normalized to give unitary struc- 
ture factors [U hi °uS. This includes the overlapped 
reflections. The data are partitioned into two sets { N} 
and {O} which are the non-overlapped and over- 
lapped data respectively. 

(ii) The origin (and enantiomorph if relevant) is 
defined by the appropriate reflections which belong 
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to set {N} and satisfy the usual rules and criteria. 
Convergence mapping, weighted to confer preference 
to reflections of low resolution, is a suitable technique. 
These reflections define the current bas is  se t  {H} 
where H c_ N;  the remaining non-basis-set reflections 
are assigned to set {K}. 

(iii) The basis-set reflections (he H)  are used as 
constraints in the generation of a maximum entropy 
prior qME(X). The latter reproduces the known phases 
and amplitudes for reflections he  H, but remains 
maximally non-committal with respect to the 
unknown structure factors h ~ H. The construction of 
qME(x) gives rise to phase extrapolation, i.e. its Four- 
ier transform can generate I U~ E and M E  for both 
he  H and he  K, i.e. 

M E  
F-r..~' U h~ n 

qME(x)~ 

The fit between "-'htr°bs and U~ v for h ~ H is of great 
importance: underfitting reduces the extrapolative 
power of qME(x) whereas overfitting produces 
artifacts which undermine the likelihood calculations, 
frequently driving the log-likelihood gains negative 
[see (v) below]. As a measure of fit we use the 
reduced-g 2 statistic: 

sg211u.Iobs-lu Eii2. 
h c H  

na and n~ are the numbers of unique acentric and 
centric reflections in the basis set respectively. The 
sum 2ha + n~ is the total number of degrees of free- 
dom. The parameter sh is a measure of variance and 
has four components: 

s~ = cr~ + peh.,Y, (1) 

where eh is the standard epsilon factor, cr~ is the 
estimated variance of lull z is the reciprocal of 
the refined N~n from likelihood refinement (see § 1.2) 
and p is an empirical parameter usually set to unity. 
However, in powder structures N~n can be small since 
the structures themselves are small, and hence ,~ 
rather large, and in these cases p is adjusted to ensure 
a sufficient fit. 

Entropy maximization is carried out by exponential 
modelling; a line search was employed until X 2 < 1.25, 
then the slower plane search algorithm was used with 
bicubic modelling of both the entropy and the con- 
straint functions to hold the X 2 at 1.0 [Bricogne & 
Gilmore (1990), § 2.3]. 

The larger the product I u l°  lu 'EI the more 
reliable the phase extrapolation will be. The extrapo- 
lates can belong to both {N} and {O}. 

(iv) When the basis set comprises only three or 
four reflections, the extrapolation is necessarily weak 
and most reflections will not have reliably extrapo- 
lated magnitudes and phases. As shown by Gilmore, 
Bricogne & Bannister (1990), adding strongly 

extrapolated reflections to the basis set causes difficul- 
ties because it traps the solution in a local entropy 
maximum. To proceed, therefore, several reflections 
I Uh~ N I with large U magnitude are given permuted 
phases just as in traditional direct methods. These 
reflections are added to the basis set and thus impose 
new constraints on entropy maximization. They are 
chosen on the following basis: 

(a) Maximum surprise - they are those about 
which the current qME(x) knows least, i.e. I Uhl is 
close to zero. 

(b) Minimum resolution - we attempt to build 
molecular boundaries before imposing atomic detail. 

(c) Optimum increase in the second neighbour- 
hood of the basis-set reflections, i.e. the new reflec- 
tions optimally increase not only the number of reflec- 
tions in the second neighbourhood, but especially the 
number which have large or very small U magnitudes. 

(d) I uhl °bs as large as possible. 
(e) Centric reflections are preferred to acentrics. 
In this way we build a phasing tree in which each 

choice of a permuted phase generates a node as shown 
in Fig. 1. Each set of nodes lying on the same line 
has the same reflections in the basis set but with 
different phase angles. They are termed e q u i v a l e n t  
n o d e s ;  a set of equivalent nodes is itself derived from 
an equivalent set. 

We are thus constantly updating our qME(x) prior. 
Clearly such a tree could readily become computa- 
tionally unwieldy since each node has to be subjected 
to entropy maximization. To prune this tree and 
identify the promising nodes we use likelihood. 

(v) The diagonal form of the likelihood used here 
has been described for single-crystal data by Bricogne 
(1984) and later by Bricogne & Gilmore (1990) and 
has been generalized by Bricogne (1991) to include 
overlapped reflections. This approximation is 
adequate for the size of structure accessible to powder 
structures. 

Likelihood also permits the refinement of the 2 
parameter which reflects the effective number Neff of 
atoms in the unit cell. Neff = 1/,Y, and is a consequence 
of both the quality and the resolution of the data. 
Nen tends to increase as the data resolution increases 
and as the size of the basis set increases and with it 
the strength of the extrapolation. Previously we have 
employed two Z parameters: 2,. for centric reflection 
and Z,, for acentrics. The generalized likelihood 
makes this distinction unnecessary. The computa- 
tional aspects of likelihood estimation and Z 
refinement are discussed in § 1.2. 

Node I (Origin and e n a n t l o m o r p h )  
I 

' I I I I I 
N o d e  2 No . .e  3 N o d e  4 N o d e  S Notde 6 N o d e  7 N o d e  8 

; I I I I I I 
Node 9 Node 10 Node 11 Node 12 Node 13 Node 14 Node 15 

Fig. 1. The early stages of a typical phasing tree. 
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Nodes with a maximum likelihood and maximum 
entropy are kept and the others discarded, although 
MICE allows the retracing back to unused nodes if 
the phasing is proving problematic. 

(vi) The process continues until all strong U mag- 
nitudes have large extrapolated values, in which case 
the phasing procedure is complete. It needs to be 
emphasized that the qME(x) is not a map in the 
traditional sense; to produce maps from which atomic 
coordinates can be extracted, qME(x) is used to gener- 
ate a centroid map in which reflections belonging to 
both sets H and K are used and assigned weighted 
Fourier coefficients; overlapped reflections are also 
included. The computational aspects of centroid 
maps are discussed in § 1.3 and the benefits of incor- 
porating overlaps into them are demonstrated in § 3.2. 

1.2. Likelihood 

This is fully described in § 3 of I, but it is useful 
to summarize some of the salient features, so that the 
practical implementation of likelihood and .,~ refine- 
ment can be discussed. 

Within an overlap set comprising m reflections (m 
is unity for a non-overlap situation), let Ri, i =  
1 , 2 , . . . ,  rn, be the observed intensities and r~, i =  
1 , 2 , . . . ,  m, be the extrapolated values both with 
multiplicities/z~. Define 

R =  ~ tx,R~ 
i=1  

and 

Let 

r= ~ Iz~r~. 
i=1  

z = Rr/X, 

and n = 2n. + nc be the total number of degrees of 
freedom. The likelihood, L, for this overlap is then 

Loc {exp [ - ( R  2 + r2)/2X,]/I; "/2} 

× 0 F , ( - ;  n/2; z2/4) (2) 

(I, § 3) where oG is a confluent hypergeometric func- 
tion. This function has the approximate properties of 
an exponential in z and to maintain stability for all 
z (and remember that z is a function of .Y which can 
take on a wide range of values as phasing progresses), 
a function X, ( z )  is defined: 

X , ( z ) = e - Z o F , ( - ;  n/Z; zZ/4). 

The log-likelihood can now be written 

log L = - n / 2  log X - ( R  - r)Z/2X, +log  X, (z ) .  (3) 

It can be visualized as a residual term between 
observed and calculated magnitudes, with log X , ( z )  
acting as an essential correction term. 

In MICE, X,(z)  is calculated as follows: 
(i) By a series expansion for small arguments. 
(ii) From closed expressions when n is odd. This 

is possible because of the relationship between gen- 
eralized hypergeometric and the modified Bessel 
functions of half-odd integer order which are them- 
selves expressible in terms of hyperbolic functions. 

(iii) via numerical approximations to the modified 
Bessel function of integer order when n is even. 

To obtain the total log-likelihood, L~,  for the 
hypothesis Y( that the vector of extrapolated structure 
factors U*  = UH, (2) is summed over all the sym- 
metry-unique extrapolated reflections h~ H both 
overlapped and non-overlapped: 

L ~ =  Z 
all 

ex t rapo la te s  

[ - n / 2  log X, - ( R - r)2/2X 

+log  X.(z)] .  (4) 

For the null hypothesis, termed Y(0, Un =0,  r, and 
hence z, is set to zero: 

L~o= Z 
all 

ex t rapo la te s  

( - n / 2  log ~' - R2/2X,). (5) 

The log-likelihood gain, abbreviated to likelihood in 
the remainder of this paper, is obtained as LY(-  LY(o, 
and this is used as the discriminator of nodes. 

Both Lg( and LY(o are maximized with respect to 
,~. (The values quoted in Tables 2 and 4 are those for 
LY(.) The starting value of ,~ is taken from Wilson 
statistics. The optimization method used is that due 
to Brent (1973) as implemented by Press, Flannery, 
Teukolsky & Vetterling (1987). It is a simple yet very 
robust method that does not employ any calculation 
of derivatives. The function to be minimized is 
bracketed between two points, a and b, with x the 
minimum function point found to date; there are two 
previous minima, v and w, and u is the point at which 
the function was last evaluated. The values of x, v 
and w are used for parabolic interpolation. To be 
accepted, the parabolic step must: 

(i) fall within the limits [a, hi; 
(ii) involve a movement from x that is less than 

half the movement of the step before last. This ensures 
convergence and prevents oscillation. 

Because of its simplicity, this method was intro- 
duced as an interim measure in program develop- 
ment, but because of its robust qualities we have 
retained its use. It also prevents the necessity of 
filtering derivatives which can sometimes be needed 
when using likelihood in a Newton or quasi-Newton 
method. The disadvantage is the number of iterations 
required to achieve convergence, which is usually 
10-20, but the calculations take ca 1-5 s on our 68030 
based workstations, and so this is not important. 
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For the null hypothesis in the form given, L~o is 
maximized under variation of ,X by 

Y. ( - n / 2 , ~  + R2/2.X2) = 0 

which gives the classical estimate of a variance from 
data with a normal distribution. 

The variances of the individual contributors in the 
form given by (1) in § 1.1 can be incorporated into 
the likelihood calculations as an option in the M I C E  
program. Although the net effect is small, it is con- 
sidered a useful safeguard and all the results quoted 
in this paper use these variances. 

1.3. Centroid maps 

There is a full derivation and discussion in I, § 6, 
but again it is worthwhile to summarize the salient 
points for discussion in a practical context. The 
weighted Fourier coefficients q~ have the same phase 
as the extrapolates r~ and are given as 

R 2 oF~(-; n/E+ 1; Z2/4) 
q ' -  n~ oF~(-; n/2; z2/4) r~ 

where ~ is the refined value from the maximization 
of L~. The hypergeometric functions are computed 
as in § 1.2 above. For the case of a single-crystal 
reflection this reduces to the standard Sim weighting 
scheme (Bricogne, 1991) using (4) in § 1.2. In § 3.2 
there is a demonstration of how the use of this formula 
produces maps which are significantly cleaner than 
those from which the overlaps are omitted. The M I C E  
program allows the computation of both overlapped 
and non-overlapped maps, with the former as the 
default. 

2. The crystal structures and data preparation 

Two known structures were studied as a test of the 
method: 

(i) KA1P207. This structure was solved initially 
from single-crystal X-ray diffraction data (Ng & 
Calvo, 1973). The powder data were extracted from 
the JCPDS database (McMutdie, Morris, Evans, 
Paretzkin, Wong-Ng, Ettinger & Hubbard, 1986). 
Since JCPDS stores only the largest magnitudes, the 
smaller structure factors unlisted in the database were 
assigned zero intensity. There were 84 unique non- 
overlapped non-zero reflections, 59 unique non-over- 
lapped zero-intensity reflections and 53 sets of over- 
laps totalling 133 reflections with as many as five 
reflections under a given envelope. The data resol- 
ution is ca 1.28/~. Fig. 2 shows a simulated powder 
diffraction pattern for these data using peak shapes 
which conform to Pearson VII functions (Young & 
Wiles, 1982) and a width at half height of 0.2 ° held 
constant across the 0 range. Each reflection was as- 
signed a nominal relative variance (or 2) from counting 
statistics. The data set thus processed represents one 

which can be readily collected on a good laboratory 
instrument, although it is somewhat inferior because 
of the way in which weak reflections have been pro- 
cessed. Because of the large number of overlapped 
reflections, it is a good test of the likelihood formal- 
ism. KAIP207 is not easily solved by routine direct 
methods; the E maps reveal the A1 atom but have a 
large number of spurious peaks which makes the 
location of the P atoms especially difficult. 

The crystallographic data are as follows: mono- 
clinic, space group P 2 J a ;  a = 8.046, b =9.657, c = 
7 .331~,  fl=106.93°; Z = 4 .  There are 11 atoms in 
the asymmetric unit: 1 x K, 1 x A1, 2 x P and 7 x O. 

(ii) The second data set is a considerable contrast - 
the clathrasil Sigma-2 (McCusker, 1988). A clathrasil 
is similar in its structure to the more common zeolites 
but has only cages and no channel system. However, 
it has all the crystallographic problems posed by 
zeolites, including a large unit cell with high sym- 
metry, the presence of large voids in the framework 
as well as disordered organic molecules. Sigma-2 has 
the molecular formula [Si640128] .4CmHI7N. The 
data were collected on the synchrotron at Daresbury 
and comprise 232 unique non-overlapped reflections 
to a resolution of ca 1.3 A, plus 13 pairs of overlapped 
reflections. This is representative of the best data sets 
that can be collected. Indeed, this structure is one of 
the largest solved ab initio from its X-ray powder 
diffraction pattern, although the process was not 
routine since it required five attempts using the X T A L  
program. As is often the case for sparse data sets, 
quartets played a major role in the phasing process. 

The crystallographic data are as follows: 
tetragonal, space group I 4 J a m d ;  a = 10.2378, c=  
34.3829 A. There are 17 atoms in the asymmetric unit: 
4xSi ,  7 x O ,  5 x C  and l x N ,  but the 1-amino- 
adamantane is disordered so that the C and N atoms 

,o ~'o 30 ~o 5'0 60 ~o ;o 

Fig. 2. The simulated powder diffraction pattern for KAIP207. 
The peak shapes are Pearson VII functions with a width at half 
height of 0.2 °. Since the data were extracted from JCPDS no 
background modelling is possible. 
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Table 1. The phasing tree for KA1P207 

The likelihoods are log-likelihood gains. ([A¢l) is the U-weighted mean 
absolute phase error in degrees. Sets of equivant nodes are delineated by 
single lines . A double line indicates a level in the phasing tree at 
which the node with the optimum likelihood shows most of  the molecular 
structure via a centroid map in which the overlapped reflections are included. 

To Likelihood Likelihood 
Node node Entropy .~ (no overlaps) (overlaps) (IAq~l) 

l -2-39 0-03074 0.20 0.96 0 

-3"96 0.04104 0.09 1"30 77 
-4"11 0'04245 -0"04 1"13 46 
-4"12 0-04238 0'08 1"15 105 
-3"96 0'04122 0"03 1-29 74 
-3"68 0'04337 -0"05 0"94 51 
-4"13 0'04421 -0"05 0"91 20 
-4"09 0'04423 0"03 0"91 80 
-3"72 0"04337 0"03 0"95 48 
-4.31 0.04520 0-00 0.75 56 
-3 '81 0.04473 0-08 0.75 25 
-3 .84 0.04464 0.09 0.76 84 
-4 .29 0"04514 0-00 0.74 53 
-3"82 0.04185 -0.12 1.23 31 
-3-78 0'03985 0.00 1"50 0 
-3"79 0"03963 0-00 1"51 59 
-3"85 0.04180 -0"12 1"22 28 

18 2 -16"23 0'03099 0"63 3-84 92 
19 2 -26"39 0'03877 0"30 2"00 65 
20 5 -14"03 0-03446 0"29 3'23 90 
21 5 -30 '05  0"03717 0'55 2"27 63 
22 14 -34 '48  0"03608 -0 '08  2"52 53 
23 14 -11-49 0"03426 -0"39 3"05 26 
24 15 -24"37 0"03452 0"05 2"49 27 
25 15 -12'61 0"06021 -0 '15  3"72 0 
26 16 -23"47 0"03528 0'02 2"56 77 
27 16 -13-60 0"03077 0.17 3"50 50 
28 17 -34"16 0"03611 -0 ' 06  2"90 51 
29 17 -13-09 0"03402 -0.17 2"93 24 

30 23 -9"69 0"06357 -0"33 3.44 33 
31 23 -9"45 0"06404 -0"22 3'77 46 
32 23 -9"27 0"05958 -0-56 2"69 20 
33 23 -9"02 0'06004 -0"51 3'10 34 
34 25 -10"10 0"06072 -0"23 4"13 12 
35 25 -10.09 0'06340 -0"28 3"39 25 
36 25 -10-02 0'05291 -0.05 4.44 0 
37 25 -9-79 0'05524 0.03 3"94 13 
38 27 -10.44 0-05410 0"23 2.79 51 
39 27 -10.22 0"05389 0"59 3-74 65 
40 27 -10.54 0-06309 -0 .04 3-88 39 
41 27 -10"38 0.06313 0.15 4.29 52 

42 34 -17'43 0"05536 -0"01 3'44 21 
43 34 -17-17 0.05546 0.07 3"94 32 
44 34 -16-84 0'05947 0'60 5"03 I0 
45 34 -14-93 0.06209 0"50 4.33 22 

46 36 -16"04 0'05139 0'25 2'31 I0 
47 36 -14"99 0"05177 0-56 2.74 22 
48 36 -15'53 0"05333 1-05 6"10 0 
49 36 -15'14 0'05336 1-41 6.13 11 
50 41 -16-88 0"06052 0"38 4"35 57 
51 41 -16-79 0'05989 0'52 4'50 68 
52 41 -16 '34  0"06141 0-52 4"11 46 
53 41 -15"29 0"06107 0-71 4"03 57 

54 48 -25 '21 0'02265 3"15 8'79 7 
55 48 -19.44 0'02380 1"55 6'88 0 
56 49 -23-09 0'02338 2-18 6"95 18 
57 49 -19"40 0.02386 3-25 9'12 10 
58 49 -21"97 0.02401 2"11 6'24 16 

malization process depends only on (sin 2 0 ) / h  2 and 
the multiplicity, not on reflection index. 

For KAIP207 the inclusion of overlapped reflec- 
tions made a dramatic change in the normalization. 
When overlapped reflections were not included, the 
process was unstable and gave an overall isotropic 
displacement factor, B, of -2 .20A,  2, whereas 
inclusion ofthe overlaps resulted in a value of 1.15 A, 2 
and realistic intensity statistics. For Sigma-2, with 
only 13 pairs of overlapped reflections, their inclusion 
had only a marginal impact. However, there was a 
problem in normalizing these data - the overall 
isotropic displacement factor was calculated at 
- 2 . 52  A, 2. This is probably, in part, a consequence of 
absorption effects. The radiation used had h = 
1.5468 ,~; at this wavelength lz/p for Si is 61 cm-l;  
the sample was held in a 1 mm capillary so that sample 
absorption is very high. No attempt was made to 
impose a different overall temperature factor on these 
data as it was deemed important to process these 
structures with minimal user intervention. 

MITHRIL was also used to estimate the variance 
of the E magnitudes (and U magnitudes) by the 
approximate method of Hall & Subramanian (1982). 
These variances are needed in the MICE program 
for inclusion in the plane search algorithm and in the 
computation of the reduced-g 2 statistic. 

In both cases, normalization was followed by triplet 
and quartet generation and a (sin 0)/A-weighted con- 
vergence map in which reflections of low resolution 
are given a higher weight than those at high resolution. 
In ME methods it is always advantageous to com- 
mence with low-resolution reflections as constraints. 
These define a molecular envelope upon which atomic 
detail can be imposed later by successive increases 
in data resolution. When this is done the whole pro- 
cess becomes much more stable than situations in 
which reflections at atomic resolution are incorpor- 
ated into the basis set at the very beginning, although 
for some structures the distribution of intensity as a 
function of (sin 0) /h  makes it impossible to proceed 
this way. The origin thus selected by convergence 
mapping was used to generate the first node of the 
phasing tree. To facilitate comparison between phases 
extrapolated by entropy maximization and the true 
values, origin-defining reflections were assigned the 
true phase angles from the refined structure. 

cannot reasonably be expected to be located by direct 
methods. 

Both data sets were normalized using MITHRIL 
in its latest release (Gilmore & Brown, 1988). In this 
version overlapped reflections can be included in the 
normalization process: they are simply partitioned 
according to reflection multiplicities, since the nor- 

3. Phasing KAIP207 

3.1. The ab initio phasing of KAIP207 

Table 1 shows the phasing tree for KAIP207. This 
section describes the phasing in detail. 

(i) Three reflections (144, 071 and 261) with [U hi °bs 
values of 0.55, 0.53 and 0.32 respectively and having 
a resolution of 1.33 A were used to define the origin. 
Entropy maximization using a p factor of 0.5 [(1), 
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Fig. 3. Sections of centroid maps centred on z = 0.0 for (a) node 
1, (b) node 15, (c) node 48 for KAIP207. Atom 1 is K; atoms 
2 and 3 are P, atom 4 is AI, the remainder are O atoms. Overlaps 
are included in the calculations. All maps are plotted using the 
PLOTQ program (Henderson, Bannister & Gilmore, 1990). 

§ 1.1] generated node 1. Fig. 3(a)  shows a typical 
section of  the resulting centroid map which used 30 
reflections including symmetry  equivalents.  The posi- 
tion of  the K atom is a l ready clearly defined. The 
quali ty of  the phase extrapolat ion at this early stage 
is also quite remarkable:  there are 14 extrapolated 
reflections having [uh l °b ' lu~El>0 .001  and only two 
of  these have incorrect phases.  This is partly a con- 
sequence of  the large U magni tudes  that are avai lable  
for origin definition. 

(ii) Using the criteria of  § 2, four reflections were 
then incorporated into the starting set with permuted 
phases (0 or 180 °) as follows: 

144 I uhl oh'-- 0.544, resolution = 1.3 ]k 

362. lull = 0.494, resolution = 1.3 

400 I uhl °bS = 0"443, resolution = 1.9 ]k 

431 I uhl = 0.376, resolution = 1.5 A. 

This generated 16 nodes (nos. 2-17). It can be seen 
from Table 1 that log-l ikelihood gains from which 
the over lapped reflections are excluded discr iminate  
very poorly, with values ranging from - 0 . 1 2  to 0.09. 
However, when the over lapped reflections are 
included,  the log-likelihoods increase by an order of  
magnitude.  Acting conservatively, nodes 2, 5, 14, 15, 
16 and 17 were retained. Note that the entropy is not 
a wholly reliable indicator  of  phase correctness - the 
entropy-preferred node has two incorrect phases.  Two 
nodes, 15 and 16, both had l ikel ihoods of  ca 1.5. A 
centroid map  based on node 15 clearly shows the K 
and Al positions with the P atoms less well defined, 
a l though there are peaks at these atomic sites. [See 
Fig. 3(b).] 

(iii) Reflection 442 with [Uhl°bs=0"56 was per- 
muted for each of  the retained nodes in (ii) to give 
nodes 18-29. The basis set now has the full data 
resolution of  1.28/~. The over lapped l ikel ihood selec- 
ted three possible nodes: 23, 25 and 27. Note that, in 
this case, the entropies for nodes 18-29 also act as 
discriminators.  As described in Gilmore,  Bricogne & 
Bannister  (1990), we use l ikel ihood as the pr imary 
discr iminator;  if  there are nodes with s imilar  likeli- 
hoods but very contrasting entropies, then the latter 
can be used as a secondary figure of  merit. In this 
case nodes 18 and 20 have entropies significantly 
lower than those for nodes 23, 25 and 27 and for this 
reason the former were not selected. It can be seen, 
however, that entropy alone is an uneven dis- 
criminator:  sometimes it is successful,  but more often 
not. At this point  the solution with the highest  likeli- 
hood showed the correct posit ions of  the K, AI and 
P atoms; however,  it was decided to pursue the calcu- 
lations to search for the O atoms. 

(iv) Three further reflections were now permuted:  
224, 162 and 214 with U magni tudes  of 0-35, 0.35 
and 0.33 respectively. This would have generated 24 
nodes. However, the P(Sq) filter was used. [See 



C. J. G I L M O R E ,  K. H E N D E R S O N  A N D  G. B R I C O G N E  837 

Table 2. The U-weighted mean absoluteo~hase error, 
a s  a function of the product lull Iu ' l for 

nodes 55 and 57 in the phasing tree for KAIP207 

T h e  final  e n t r y  g ives  t h e  v a l u e s  fo r  all e x t r a p o l a t e s  wi th  a I UhI°~'IuME I 
p r o d u c t  > 0 " 0 0 1 .  

N o d e  57 N o d e  55 

I uhl°~'l u~EI <LJ~I> Number of <IA~I> Number of 
l imi t s  (°) e n t r i e s  (°) e n t r i e s  

0.0010-0.0049 89 19 93 17 
0.0050-0.0099 65 I 1 104 I 1 
0-0100-0.0199 61 15 63 15 
0.0200-0.0249 0 6 0 3 
0.0250-0.0299 0 4 0 3 
0.0300-0.0449 0 5 0 5 
0.0500-0.0689 0 5 0 6 

0.0010-0.0689 42 65 49 60 

Gilmore,  Bricogne & Bannister  (1990), § 5.1.] In this 
method a set of  reflections, such as the three cited 
above, are chosen and their phases permuted in the 
usual way. Each permutat ion gives rise to 8q(x) which 
is a Fourier  synthesis using 1robs_ u ~ E  ~'~'h as 
coefficients. P(~q) is calculated as 

P(Sq) ocJ 8q(x)2/qME(x)d3x 

(Bricogne, 1984). A m i n i m u m  value is required for P 
which then acts as a filter: only those sets below a 
specified m a x i m u m  value are passed to entropy 
maximizat ion  and become part of  the phasing tree. 
The method is very fast compared to the time taken 
for entropy maximizat ion,  requiring only one Fourier  
synthesis and a map division. The method,  however, 
is only of value when it produces values of  P which 
have sufficient contrast. In most of  the steps in this 
calculation,  this was not the case. Appl icat ion of the 
filter to these three nodes with the three permuted 
reflections produced 12 nodes, 30-41, which were 
then subjected to entropy maximizat ion.  Three nodes 
had l ikelihoods >4 .0  and were retained. 

(v) Two further reflections (421 and 135) with U 
magni tudes  0.34 and 0.32 were permuted.  The P filter 
gave no useful d iscr iminat ion so that 12 further nodes 
were generated numbered  42-53. Only two had log- 
l ikel ihood gains in excess of  6.0. A section from node 
48 is shown in Fig. 3(c). The map is very clean with 
the positions of four of  the O atoms now clearly 
indicated. 

(vi) A final permutat ion of 023, I U h ]  ° b s  = 0.26, and 
150, lull 0,20, coupled with the P filter gave five 
nodes numbered  54-58. There are two points of  inter- 
est here. First the refined 2 parameter  shows a dra- 
matic fall, which is typical behaviour  when a great 
deal of  correct phase informat ion has accumula ted  
and the ME extrapolat ion becomes more and more 
exact. Secondly, the node selected as best by the 
l ikel ihood has one wrong phase in the basis set. 
However, this node (57) produces better maps  and 
has better-quality extrapolat ion than node 55 in 
which all the basis-set phases are correct. For node 57 
there are 65 extrapolated U magni tudes  having 

Iuhl°bsIu~El>0"001 of which 19 are wrong, whilst 
for node 55 there are 60 such extrapolates of  which 
21 are wrong. The extrapolat ion results are tabulated 
in Table 2. 

The final map  shows the K, Al and P atoms with 
the correct relative peak heights, plus the positions 
of five of  the seven O atoms; the rest can easily be 
placed by simple model  building.  This is a remarkable  
result. Tradi t ional  direct methods have difficulty in 
locating light atoms in the presence of strong X-ray 
scatterers, but here even with relatively poor and 
limited data most of  the light atoms have been located. 

3.2. The inclusion of overlapped reflections in centroid 
maps 

Since ca 50% of  the reflections in this data set are 
overlapped,  it is a good test of  the usefulness of 
including overlaps in the centroid maps. Fig. 4 shows 
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Fig. 4. Sections of centroid maps for KAIP207 centred on z = 0.58 
for node no. 25. (a) Overlapped reflections included; (b) over- 
lapped reflections excluded. 
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a typical section of a centroid map for node 25 centred 
at z =0-58; Fig. 4(a)  includes the overlaps whereas 
Fig. 4(b) excludes them. The former map is sig- 
nificantly cleaner with fewer and weaker spurious 
peaks. Where maps are subjected to automatic peak 
search and interpretation, the inclusion of overlapped 
reflections could be essential, and it is obviously 
worthwhile to use them as a default. 

4. The phasing of Sigma-2 

It is a reflection of the quality of this data set that, 
although Sigma-2 is a more complex structure than 
KAIP207, it was quite simple to solve using ME- 
likelihood techniques. Indeed it is relatively easy to 
solve via routine direct methods. The phasing tree is 
shown in Table 3. The P filter was employed at each 
phase permutation in the following calculations, but 
proved to be of very limited value, with only weak 
indication of the preferred sets. This could be a con- 
sequence of the very sharp atomic resolution maps 
that entropy maximization produced even in its ear- 
liest stages. Thus no results based on P(6q) appear 
in this section. 

(i) The space group is 14~/amd, so that the origin 
was defined via a single reflection (549) with ]U hi °bS = 
0"21 and a resolution of 1.5/~. A p factor [(1), § 1.1] 
of 0.3 was used in entropy maximization. The result- 
ing centroid map, based on 16 reflections in the hemi- 
sphere, is shown in Fig. 5(a). Although the map is 
noisy, there are peaks corresponding to all the Si and 
five of the O atoms. 

(ii) Reflections 116, 224, 211 and 516 having U 
magnitudes of 0.27, 0.20 and 0.19 respectively and a 
resolution range of 1.9-4-5 A were permuted to gen- 
erate nodes 2-17. The results again show the power 
that the overlapped reflections add to the likelihood. 
There are only 13 pairs of overlaps, but some of these 
reflections are both strong and belong to the second 
neighbourhood of the basis set, thus playing a key 
role in the likelihood calculations, particularly in the 
early stages of phasing. With overlaps excluded, all 
the nodes have negative likelihoods, but with their 
inclusion, nodes 6 and 13 have positive likelihoods 
and are thus retained. Fig. 5(b) shows a typical section 
of the centroid map based on 416 reflections. Its 
quality is remarkable: it is almost noise free and shows 
all but two of the ordered Si and O atoms with a clear 
distinction in peak height between Si and O except 
for O(1) which has too large a peak. Nonetheless, 
Sigma-2 is clearly solved at this point, but we con- 
tinued the calculations to see how much more infor- 
mation could be extracted. 

(iii) For each of the nodes 6 and 13, three reflec- 
tions (549, 4,4,16 and 448) with U magnitudes of 
0.20, 0.19 and 0-18 respectively and a maximum 
resolution of 1-38/~ were given permuted phases, 
thus generating nodes 18-33. On likelihood grounds, 

Table 3. The phasing tree for Sigma-2 

See T a b l e  1 fo r  e x p l a n a t o r y  no tes .  

To  Z L i k e l i h o o d  L i k e l i h o o d  <1~1> 
N o d e  n o d e  E n t r o p y  ( x 1 0 4 )  ( n o  o v e r l a p s )  ( o v e r l a p s )  (°) 

1 - -  -0.31 3.6 0.02 0.02 0 

-1 '45  64.2 -0-54 - 0 ' 4 6  32 
-1 '55  75'6 -0"19 -0 '13  78 
-1"29 57.4 -0.88 -0"91 66 
-1"56 77-4 -0 ' 18  -0"24 112 
-1"45 72'9 -0"13 0'04 0 
-1 '53  76.6 -0.33 -0 '33  47 
-1"34 72.5 -0 '55  -0 .44  34 
-1 '57  75.8 -0"10 -0 .09 80 
-1"56 75"5 -0 '17  -0"15 64 
-1.41 71.8 -0"31 -0"16 98 
-1"51 76.2 -0"56 -0"56 144 
-1"45 72"5 -0 '15  0'00 32 
-1"59 77-1 -0 '22  -0 .27 78 
- l "33 62-6 -0 '58  -0"62 66 
-1"53 76-0 -0 '38  -0"32 l l 8  
-1"38 68-3 -0 ' 46  -0"39 l l 2  

18 6 -2"01 86'5 -0-83 -0"59 40 
19 6 - 2"40 89' I - 1.07 - 1.03 62 
20 6 - ! '95 87.7 -0-66 -0.48 19 
21 6 -2.32 89"8 -0"55 -0-46 41 
22 6 -2"01 87"2 -0.01 0-20 20 
23 6 -2 .30 88"2 -0"37 -0"23 43 
24 6 -1"90 86'8 0-32 0"51 0 
25 6 -2"22 88'0 -0 .14 0-07 22 
26 13 -2.68 89"6 -0"29 -0"13 134 
27 13 -2.65 85.7 0"06 0.17 156 
28 13 -2 .75 90.6 -0.85 -0"82 113 
29 13 -2"62 86"5 -0 ' 58  -0"45 135 
30 13 -2.42 88"1 -0.78 -0"65 114 
31 13 -2.53 83-9 0.05 0'15 136 
32 13 -2-44 87"3 - I . 4 3  -1 '18  93 
33 13 -2"46 83-3 -0"68 -0 ' 44  116 

34 22 -3"55 69"6 -4 .66 -5 '35  47 
35 22 -2.75 73.0 0.03 0.09 31 
36 22 -3-00 71-6 -1"88 -1 '87  33 
37 22 -3"01 71-4 0'72 1"02 17 
38 24 -3 .64  70.2 -2"58 -3.03 30 
39 24 -2.78 73-9 0.54 0.44 14 
40 24 -2.97 67.8 - 1.74 - 1.74 16 
41 24 -2-96 68-0 1'76 2"08 0 

42 41 -4.42 74.3 -0.48 -0 ' 38  37 
43 41 -4"45 72.7 0-26 0'35 24 
44 41 -4 '39  74-0 -0 .48 -0"65 24 
45 41 -4.15 74-0 -0.16 -0"25 11 
46 41 -3-08 71.2 2'49 2'92 26 
47 41 -3 ' 36  68-4 4"17 4"71 12 
48 41 -3 '37  68-9 3'83 4'53 13 
49 41 -2 .90  69'9 4"50 5"20 0 

50 49 -3-67 67-5 2.42 2'51 20 
51 49 -4 .20  65"0 4.19 4'54 9 
52 49 -5-31 68.4 0.44 0.07 30 
53 49 -5"30 67.4 2.62 2.78 19 
54 49 -3-39 65'9 i .09 0.04 l0 
55 49 -3"51 62"5 4.52 4-33 0 
56 49 -4-42 68"2 2'23 2-18 20 
57 49 -4 '33  65.0 4'21 4'43 10 

58 55 -4.03 58-6 5.28 4.98 7 
59 55 -4.47 59"0 4-01 3.47 14 
60 55 -3 .97 56"0 7-49 6"80 0 
61 55 -4"60 55"8 4"05 2'27 7 

nodes 22, 24, 27 and 31 were retained. However, these 
nodes have entropies o f - 2 . 0 1 ,  -1 .90,  -2 .65  and 
-2 .53 respectively. Using entropy as a secondary 
indicator, only nodes 22 and 24 were retained with 
node 24 much preferred. Node 24 is indeed the correct 
one; extrapolation at this point shows only one wrong 
phase in the top 21 extrapolates. 
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The real-space nature of these calculations makes 
the investigation of nodes via computer graphics an 
easy and natural activity; wrong nodes can be spotted 
by visual inspection of the centroid maps where 
chemical knowledge is brought into use as well as 
using likelihood and entropy. As an example of a 
centroid map for a wrong node, a section is shown 
in Fig. 5(d) for node 32. It can be seen that the 
signal-to-noise ratio is poor and that the peaks define 
an Si-O cage structure that is too small to be chemi- 
cally sensible. 

(iv) For each of the nodes 22 and 24, reflections 
631 and 3,2,21 having U magnitudes of 0.18 and 0.16 
were permuted, generating nodes 34-41. The p par- 
ameter was reduced to 0-20 and each node subjected 
to entropy maximization. Node 41 with a likelihood 
of 2.08 is strongly preferred and retained. A map at 

this point is very clear with only the peak correspond- 
ing to 0(2)  being rather weak. 

(v) Reflections 4,0,18, 7,0,11 and 635 (Iuhl°bs= 
0.18, 0.18 and 0.16 respectively) were given permuted 
phases. The calculations now extend to the full data 
resolution. This generates nodes 42-49, of which no. 
49 is clearly indicated on both likelihood and entropy 
grounds. The corresponding centroid map with 1290 
contributors is shown in Fig. 5(c). The position of 
0(2)  is now indicated thus completing the clathrasil 
cage structure. However, two further sets of 
equivalent nodes were generated to see if any indica- 
tions were available concerning the position of the 
disordered 1-aminoadamantane molecule. 

(vi) Reflections 3,0,17, 721 and 723, all with 
IV hi °bs= 0"16, were permuted to generate nodes 50- 
57. On likelihood ground, nodes 51, 55 and 57 survive, 
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Fig. 5. Sections of centroid maps centred on z=0.0 for (a) node 1, (b) node 6, (c) node 60, (d) node 32 (an incorrect node) for 
Sigma-2. Atoms numbered 1-4 are Si, 5-11 are O and the remainder represent the disordered 1-aminoadamantane molecule. 
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but  the entropies are -4 .20,  -3 .51 and -4 .33 respec- 
tively; thus only node 55 was retained. Phase extrapo- 
lation for this node shows that for the 100 reflections 
having I uhl°bsl U IME> 0.001 only 16 are incorrect. 

(vii) Finally, reflections 3,1,24 and 3,1,16 with U 
magnitudes of 0.14 and 0.13 respectively were per- 
muted to give nodes 58-61. The p parameter is still 
0.20. Node 60 is clearly indicated at this point. A 
centroid map based on 1570 reflections shows not 
only the Si-O cluster but a smear of density indicating 
the location of the 1-aminoadamantane molecule (see 
Fig. 6). The positions of four of the adamantane atoms 
are also indicated. Given that this is powder diffrac- 
tion data and that the basis set comprises only 18 
unique reflections, this is quite remarkable. Table 4 
summarizes the quality of the phase extrapolation at 
this point. 

There are three further features of this analysis 
which are worthy of comment: 

(a) The ,~ parameter starts at ca 75 x 10 -4  (exclud- 
ing node 1 where the very low value is unreliable 
because of the weakness of the extrapolation). It rises 
to 88x 10 -4 for nodes 18-33 as the data resolution 
and hence the Nee~ increase; then it falls steadily to 
ca 58 x 10 -4 for the last nodes as the phase extrapola- 
tion becomes stronger and as the basis set accumu- 
lates more and more correct phase information. 

(b) In later stages of the analysis the likelihood 
estimate in which overlapped reflections are included 
sometimes falls below that for which overlaps are 
excluded. This is not unexpected. The overlapped 
reflections belong to the second neighbourhood of 
the basis set. As extrapolation increases in strength, 
some of these reflections may well be overextrapo- 
lated, i.e. I U~EI >lu.I and this depresses the likeli- 
hood estimates. The strength of the method is, 
however, in no way reduced. 
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Fig. 6. A section of a centroid map centred at z --0.93 for node 
60 for Sigma-2. The peaks numbered 12 and above are the refined 
positions of the disordered 1-aminoadamantane molecule. 

Table 4. U-weighted mean absolute phase error as a 
function of  the product I Uhl°bsl U 'EI for node 60 in the 

phasing tree of  Sigma-2 

(]A~p]) N u m b e r  o f  
I U hi°hi I U ~ E [  l imi ts  (°) en t r i e s  

0.0010-0-0019 77 35 
0-0020-0-0029 59 13 
0.0030-0.0039 31 9 
0.0040-0.0049 17 9 
0-0050-0"0059 0 6 
0.0060-0.0069 0 6 
0.0070-0.0079 0 5 
0'0110-0'0080 0 8 
0"0439-0-0109 0 7 

0.0010-0.0109 28 98 

(c) Taking strongly extrapolated reflections into 
the basis set is as disastrous for powder data sets as 
for the single-crystal case. It pins the entropy into a 
false maximum, building artefacts into the resulting 
maps. As an example, for node 55, 36 extrapolated 
reflections having [ Uh[°bs[ U~E[ > 0"05 were incorpor- 
ated into the basis set with phase angles taken from 
U~ E. All these angles were correct. After entropy 
maximization, however, the likelihood fell to -9 .20  
and the centroid map showed very large peaks at the 
centres of ring systems; it was difficult to interpret. 

5. Summary and concluding remarks 

We have demonstrated the applicability of the com- 
bined use of entropy maximization and likelihood 
estimation to the determination of crystal structures 
from their X-ray powder diffraction patterds even 
when the data are relatively poor in quality. The 
single-crystal likelihood, calculated from non-over- 
lapped reflections, is a poor discriminator in these 
circumstances, but the new likelihood incorporating 
the overlap information has proved to be a uniquely 
powerful figure of merit. Entropy serves as a valuable 
secondary indicator of preferred phase sets. 

One disadvantage of this method is an increased 
computing requirement when compared to traditional 
direct methods. However, relatively few nodes were 
needed for both KA1P207 and Sigma-2: the former 
was solved after 29 nodes and the latter after only 
17; the remaining nodes were generated in an attempt 
to see how much further information could be extrac- 
ted from the diffraction data. This was successful: 
light atoms that would not normally be resolved in 
traditional direct methods became clearly visible. The 
computing time was a matter of hours on our Concur- 
rent workstations, which are UNIX based 68030 
machines running at 33 MHz. We are currently work- 
ing to reduce this time substantially by performing 
the entire process of exponential modelling in 
memory with a minimum of disk transfers. This will 
replace the current method which stores all maps on 
disk and uses intermediate scratch files in the Fourier 
calculations. Initial indications show that this will 



C. J. GILMORE, K. HENDERSON AND G. BRICOGNE 841 

speed up the calculations by a factor of 5-10. We can 
thus expect all these calculations to take less than 
one hour of processor time; on the new generation 
of workstations, from e.g. IBM or MIPS, the total 
time would be less than 15 rain. Computer time is 
thus not an important issue. 

Another point needs to be made concerning data 
quality and completeness. To solve structures ab 
initio, the data quality and its mode of processing are 
still of paramount importance. Weak reflections, in 
particular, must be measured carefully and included 
in the data set with their observed values, not a zero 
value. The effects of not doing so are well documented 
for the single-crystal case: it introduces a bias which 
may upset the whole phasing procedure. The effect 
would be worse in the powder case, where the data 
are much more limited and where the sophisticated 
analysis which underlies the likelihood criterion 
would be even more vulnerable to systematic bias in 
the data. 

As far as future developments are concerned, paper 
I has described some other theoretical results which 
could further enhance the capabilities here. In par- 
ticular: 

(i) The use of a multichannel entropy formalism 
(Bricogne, 1988) in which the heavy atoms and light 
atoms are assigned separate channels in the entropy 
maximization. This would improve our ability to 
resolve light atoms in the presence of heavy scatterers. 
Since atoms may have negative scattering factors in 
this formalism, the program Would then also be able 
to deal with neutron diffraction data in a very natural 
fashion. This is discussed in detail by Bricogne (1988). 

(ii) Hyperoctant phase permutation (I, § 6) would 
permit the inclusion of overlapped reflections into the 
basis set. For Sigma-2, some very strong reflections 
were involved in overlaps and it would be valuable 
to incorporate these into the basis set, thus using them 
in an active way. Many data sets are predominantly 
overlapped and this would offer a mechanism of 
solving such structures. 

(iii) The generalization of the 'heavy-atom' 
method by using likelihood to detect and exploit the 
presence of known fragments (I, § 5). 

(iv) New methods of data normalization for non- 
uniform distributions and in the presence of known 
fragments (I, § 5.1). 

(v) New criteria for conducting crystal structure 
refinement against powder data (I, § 8). 

The possibility of these future enhancements 
together with the methods described in this paper 
make the routine solution of complex structures from 
powder data a realistic prospect. 
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